C.U.SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Differential and Integral Calculus

Subject Code: 4SC04DIC1		Branch: B.Sc. (Mathematics)	
Seme	ester: 4 Date: 04/05/2022	Time: 11:00 To 02:00 Ma	rks: 70
Instr (1 (2 (3 (4	 uctions: Use of Programmable calculator & a Instructions written on main answer Draw neat diagrams and figures (if r Assume suitable data if needed. 	any other electronic instrument is prohibited book are strictly to be obeyed. necessary) at right places.	1.
Q-1	Attempt the following questions:		(14)
a)	Define: Gradient		(02)
b)	If f is solenoidal vector then what is the	the value of $grad(divf) = $	(01)
c)	True/False: Curl is a vector quantity.		(01)
d)	Evaluate: $\int_{0}^{2} \int_{0}^{2} (x+y) dy dx$		(02)
e)	Evaluate: $\int_{1}^{2} \int_{0}^{1} \int_{2}^{3} xy^{2} z^{3} dz dy dx$		(02)
f)	State Stoke's theorem.		(02)
g)	Define: Curvature		(02)
h)	Form the partial differential equation $z = (x+a)(y+b)$.	by eliminating the arbitrary constants from	(02)
Attem	ot any four questions from Q-2 to Q-8	3	
Q-2	Attempt all questions		(14)
a)	Find the directional derivative of $\phi = P(1,1,1)$ in the direction of line $\frac{x-1}{2} = P(1,1,1)$	$5x^2y - 5y^2z + 2.5z^2$ at the point $\frac{y-3}{2} = z$.	(05)
b)	For which value of component v_3^2 is v	$v = e^x \cos y i + e^x \sin y j + v_3 k$ solenoidal	. (05)
c)	Find $\nabla \phi$, where $\phi = \log (x^2 + y^2 + z)$	z^2) at (5,1,2).	(04)
Q-3	Attempt all questions		(14)
a)	Define: Irrotational and find constants	\vec{x} a, b, c if $\vec{v} = (x + 2y + az)i + i$	(05)
L)	(bx - 3y - z)j + (4x + cy + 2z)k is	s irrotational function.	0 (05)
D)	at point $(3,1,-4)$.	$y = y^2 + (z + 2)^2 = y^2$	9 (03)
	F	Page 1 of 3	

c) Find the equation of tangent plane and normal line at point (-2, 1, -3) to the (04)ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$

Q-4	Attempt all questions	(14)
a)	If u, v are vector point functions and ϕ is a scalar point function then prove that	(07)
	$div(u \times v) = (curlu) \cdot v - u \cdot (curlv).$	

- **b**) If $\vec{v} = xi + yj + zk$ then show that $\operatorname{curl} \vec{v} = \overline{0}$. (05)
- State Green's theorem. **c**)

(02)

(14)

(14)

(14)

Attempt all questions **O-5**

a)

(14)Verify Green's theorem for $\iint_C [(x^2 - 2xy)dx + (x^2y + 3)dy]$, where *C* is the (08)

boundary of the region bounded by the parabola $y = x^2$ and the line y = x

Evaluate $\iint (x+y) dA$, where *R* is Trapezoidal region with vertices (0,0), (5,0), (06) $\left(\frac{5}{2},\frac{5}{2}\right), \left(\frac{5}{2},-\frac{5}{2}\right)$ by using transformation x = 2u + 3v and y = 2u - 3v.

Q-6 Attempt all questions

Evaluate $\iint_{a} 7xy^2 dA$, where R is region bounded by $1 \le x \le 2, 2 \le y \le 3$. (05)a)

b) Evaluate
$$\int_{0}^{2} \int_{y^2}^{4} (x^2 + y^2) dx dy$$
 by change the order of integration. (05)

Find the work done when a force $\overline{F} = 3xy\hat{i} - y^2\hat{j}$ moves a particle from origin to (04)**c**) (1,2) along a parabola $y = 2x^2$.

Q-7 Attempt all questions

- Evaluate $\iiint dV$ where V is solid region bounded by $1 \le x \le 2, 2 \le y \le 4, 2 \le z \le 5$ (05)a)
- (05)b) Evaluate $\iint x^2 dx dy$ where *A* is the region in the first quadrant bounded by the hyperbola xy = 16 and the lines x = y, y = 0, x = 8.
- Find the equation of tangent plane and normal line at point (3,4,5) to the surface (04)**c**) $x^2 + y^2 - 4z = 5.$

Q-8 Attempt all questions

- **a**) Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y$, given that $\frac{\partial z}{\partial y} = -2\cos y$ when x = 0 and z = 0 when y is a (05)multiple of π .
- Show that the radius of curvature at any point on the cardioids $r = a(1 \cos \theta)$ is (05)**b**)

$$\frac{2}{3}\sqrt{2ar}.$$

c) Form the partial differential equation by eliminating the arbitrary function from (04) $z = xy + f(x^2 + y^2).$

Page **3** of **3**

